zum Inhalt
Header Image

04: Sicherheit der Energieversorgung

-
Alpbacher Hauptschule
Breakout / Working Group
in englischer Sprache

Diese Arbeitsgruppe beschäftigt sich mit der Frage, wie in einem zunehmend liberalisierten Markt und teilweise stark fragmentierten regulatorischen Umfeld auch in Zukunft eine sichere, wirtschaftliche und umweltfreundliche Energieversorgung am besten gesichert werden kann. Die Teilnehmer werden diese Frage auf Basis historischer Trends und der besten verfügbaren angebots- und nachfrageseitigen Projektionen, sowie unter Bedacht auf die wesentlichen Anforderungen der Energiekunden an deren Energieversorger diskutieren. Unter Bedacht auf wesentliche öffentliche und regulatorische Anforderungen/Treiber werden auch Annahmen zum Beitrag neuer Technologien getroffen. Die Arbeitsgruppe wird darauf abzielen, aus ihrer Sicht Hauptpfeiler einer Strategie für die Beibehaltung hoher Netz- und Versorgungssicherheit zusammenzufassen.

Vortragende

Mitglied des Vorstandes, Siemens AG Österreich, Wien Abstract
Sicherheit der Energieerzeugung

Wirtschaftliche Erzeugung und sichere Versorgung mit elektrischer Energie ist Grundvoraussetzung für jede moderne und erfolgreiche wirtschaftliche Entwicklung - Wirtschaftswachstum und Strombedarfszunahme stehen in einer engen Korrelation. Die Energieerzeugung darf allerdings auch langfristig unseren Lebensraum nicht gefährden und muss nachhaltig im Einklang mit der Umwelt stehen.
Die steigende Energienachfrage muss zu jeder Zeit durch entsprechende Kraftwerkskapazitäten und Netzstrukturen sichergestellt werden. Durch den jährlich steigenden Energiebedarf und die Tatsache, dass Kraftwerke aufgrund ihres Alters, geringer Wirtschaftlichkeit und hoher Emissionen stillgelegt werden müssen, stellt sich die Frage, wie ein zukünftiges Energieerzeugungs- und -verteilungskonzept aussehen könnte.

Bei der Neuerrichtung kalorischer Kraftwerke werden Technologien mit hohen Wirkungsgraden eingesetzt. Die höchsten Wirkungsgrade werden mit Gas als Energieträger erreicht.

Die innovativste Möglichkeit, mit Gas Energie zu erzeugen, stellt ein
GuD Kraftwerk dar. Moderne GuD-Kraftwerke wie jenes in Wien  Donaustadt erreichen heute kombiniert mit einer Fernwärmeauskopplung einen Brennstoffnutzungsgrad von etwa 85 Prozent.

Steigende Rohöl- und Gaspreise rücken den Brennstoff Kohle in den letzten Jahren wieder stärker in den Vordergrund. Kohlekraftwerke verursachen jedoch höhere Schadstoff-Emissionen als GuD-Kraftwerke. Eine innovative, visionäre Möglichkeit, Kohle umweltfreundlich zu nutzen, bietet die Kohlevergasung. Die modernste Entwicklung zur Vergasung von Kohle ist das IGCC-Verfahren. Dabei wird die Kohle vergast und als Brennstoff z.B. in Gasturbinenkraftwerken eingesetzt. Kohlendioxid kann technisch abgetrennt werden und als Rohstoff für andere Produkte verwendet werden. Ein Nachteil ist der geringere Wirkungsgrad verglichen mit herkömmlichen Kohlekraftwerken.

Aufgrund der Endlichkeit fossiler Brennstoffe wird der zukünftige Energiebedarf für die weitere Zukunft immer mehr aus regenerativen Quellen wie Solar, Erdwärme (Geothermie), Wasser- und Gezeitenkraftwerke sowie Biomasse und Windenergie gedeckt werden müssen.

Während die Energieerzeugung bei Biomasse und Geothermie zur Grundlastdeckung eingesetzt werden kann, stellt die fluktuierende Energieerzeugung z.B. bei Wind und Solar ein Problem für das Betreiben von elektrischen Netzen dar und kann daher nur als Ergänzung genutzt werden.

Die Wasserkraft kann bei Laufkraftwerken zur Grundlastdeckung und bei Speicherkraftwerken zur Spitzenabdeckung und zur Netzstabilisierung eingesetzt werden.

Visionär könnte Wasserstoff in Zukunft eine große Rolle bei der Energieerzeugung spielen, leider ist das Erzeugen von Wasserstoff jedoch mit einem sehr hohen Energieaufwand verbunden. Der erzeugte Wasserstoff könnte beispielsweise über Brennstoffzellen direkt zur Erzeugung elektrischer Energie mit hohem Wirkungsgrad eingesetzt werden, da der Umwandlungsschritt in Wärme in diesem Prozess entfällt.

Der heutige regenerative Anteil der globalen Energieerzeugung liegt nur bei ca. 20% Prozent (ca. 17-18 % Wasserkraft). Daher wird die Energieerzeugung der nächsten Jahrzehnte noch stark durch fossile Energieträger geprägt sein.

Aber auch bei bereits bestehenden Kraftwerken kann durch die Modernisierung des thermischen Teils und der Leittechnik der Wirkungsgrad gesteigert werden. Dem Bereich der Automation kommt hier mehrfach enorme Bedeutung zu. Moderne Leittechnik erhöht bei der Erzeugung die Effizienz des Kraftwerks und optimiert alle Parameter, um den Brennstoff effizienter zu nutzen und Emissionen zu reduzieren.

Trotz diverser Umweltauflagen und dem Inkrafttreten des Kyoto-Protokolls, ist es bis heute nicht gelungen die CO2-Emissionen zu reduzieren. Durch Wirkungsgradverbesserungen von bestehenden Kohlekraftwerken und GuD-Kraftwerken bzw. durch Neubau modernerer Kraftwerke könnten die weltweiten CO2-Emissionen stark reduziert werden. So sind etwa 60 % der Kohlekraftwerke weltweit älter als 20 Jahre, 11 % sogar älter als 40 Jahre. Das weltweite Reduktionspotenzial liegt bei mehreren Milliarden Tonnen CO2 pro Jahr.

Eine andere Möglichkeit, CO2-Emissionen nicht in die Atmosphäre entweichen zu lassen, liegt bei der CO2-Sequestrierung. Dabei wird CO2 z.B. aus Rauchgasen abgetrennt, verflüssigt oder mineralisiert und könnte anschließend in unterirdischen Speicherstätten oder in großen Meerestiefen gelagert werden. Entsprechende Feldversuche gibt es bereits seit Jahren.

Auf dem Gebiet der Energieübertragung und -verteilung wird das Thema Versorgungssicherheit auch in Zukunft groß geschrieben werden. Bestehende Übertragungsnetze sind oft bis an ihre Grenzen belastet. Zukünftige Übertragungsnetze müssen nicht nur stabil sein, sondern auch die Energie verlustarm übertragen können (Höchstspannungsnetze, z.B. 1000 kV).

Wegen der deutlich niedrigeren Leitungsverluste, der Stabilisierung angeschlossener Netze und der einfacheren Konstruktion der Freileitungen, sind HGÜ-Leitungen bereits bei Distanzen von etwa 600 km die wirtschaftlichste Art des Transports großer Energiemengen. Damit wird es möglich, immer mehr Netze grenzüberschreitend zu verbinden und somit die innere Struktur von großen Netzen und in weiterer Folge die Versorgungssicherheit zu erhöhen.

Gasisolierte Schaltanlagen (kurz GIS), gasisolierte Schalttechnik und seit kurzem auch gasisolierte Leitungen zur Hochspannungs-Übertragung gewinnen zunehmend an Bedeutung. Das Isolationsgas ist zumeist reines Schwefelhexafluorid (kurz SF6). Es ist ungiftig, besser isolierend als Luft und chemisch neutral. Gasisolierte Komponenten können um ein Vielfaches kleiner gebaut werden als herkömmliche luftisolierte Anlagen.
Eine Weiterentwicklung der gasisolierten Schaltanlage sind hochintegrierte Schaltanlagen (kurz HIS), die noch kompakter und damit kleiner gebaut werden können.

Auf der Netzseite sind moderne Energiemanagementsysteme unumgänglich, um die Transportanforderungen in einer liberalisierten Energiewirtschaft zu meistern.
Strombörsen dienen als Umschlagplätze in den deregulierten und liberalisierten Märkten. Über Auktionen werden dort Angebot und Nachfrage so schnell aufeinander abgestimmt, dass trotz hoher Dynamik ein stabiler Netzbetrieb gesichert ist. Ein Problem stellen allerdings die voneinander unabhängigen Marktteilnehmer dar, die im Krisenfall koordiniert werden müssen.

Die Versorgungssicherheit sowie die erforderliche Qualität bei Frequenz und Spannung erfordert bei überregionalen Netzen entsprechende Schutz- und Steuereinrichtungen. Ebenso bestimmen in einem freien Markt betriebswirtschaftliche Faktoren den Einsatz von Kraftwerken, die neben dem Versorgungsaspekt berücksichtig und bewältigt werden müssen.

Die Basis dafür bilden modernste Technologien, die immer stärker mit den Möglichkeiten moderner Kommunikationstechnik verknüpft werden. Dadurch ist es möglich, jederzeit Analysen von Netzzuständen, Lastprognosen, etc. zu erhalten und diese Informationen auch mit kommerziellen Daten wie Energiepreisen, Brennstoffkosten, etc. zu optimieren.

Neue Technologien und Systeme ermöglichen daher der Energiewirtschaft weiterhin elektrische Energie kostengünstig, sicher und umweltfreundlich bereitzustellen.
Leader of Lower Carbon Futures, Environmental Change Institute, University of Oxford
Vorstand, Energie-Control Austria, Wien
Special advisor to the Commissioner for Energy and Former Member of the European Parliament, Stuttgart Abstract
Security of Energy Supply  Regulatory Challenges

The term Challenges refers to the events to come. What do we know about the future of energy supply? And how will this future affect the regulators?

As what is yet to be cannot be foreseen my remarks are highly speculative the more we move into future decades. Anyhow, we know some of the facts that will most probably determine the time to come:

1. Cheap oil, to a lesser extent gas, will become a scarcity in the decades ahead. We do not know exactly when, we may speculate about the political constraints, but we know by experience that with increasing imports we are becoming more vulnerable. Our import dependancy is of economic and political risk. It is therefore of paramount importance for Europe to reduce the dependancy on energy imports, at least not to increase them.

2. Climate Change is another foreseeable risk. If the climatologists are right and if we want the global temperature increase not to exceed 2 degrees compared with the preindustrial average temperature we have to increase our efforts enormously to stabilize the global greenhouse gas emissions at  globally - 30 billion tons of CO2 equivalent. Actually we emit about 24 billion tons. Given an incease in world population to 7 or 8 billion people in the decades ahead and assuming all human beings are equal you can easily find that in a few decades ahead every man and woman has the right to emit to not more than 3 or 4 tons of CO2 per year.

3. A third most probable development will be the growing integration of our gas and electricity networks. Europe will become highly interconnected, over- and underground, the distinction between the national systems will steadily disappear, networks will be sold and bought like energy companies, the private shareholders will have a greater say, in other words, we are moving towards a de facto ownership unbundling without changing the law. Neighbouring non-EU countries will be included in our european energy market. Such a big and complex network raises the question how stable it is and how its architecture resists to weaknesses in the system.

4. Europe will probably increase the efforts to reduce her energy dependance. There is an observable renaissance of the nuclear sector. We will maintain our policy in favour of renewables. Clean Coal becomes a major item. And energy efficience comes again on our agenda. All need regulation, sooner or later.

5. The most vulnerable sector is transport. First of all it depends nearly 100% on oil. And second it is a growing source of CO2. The automotive and the aeronautics sector will come under pressure of our environmental priorities. Sooner or later the transport sector will be included in the emissions trading scheme. We might even envisage the forced replacement of oil by gas and biofuels.

How do these observations affect the regulators?

1. Regulation becomes a more and more transborder issue. Our network architecture needs common rules and standards. It is not excluded that in ten or twenty years time we will see the creation of a european regulator with national or transnational regional subregulators.

2. A big network is only stable when it consists of quasi autonomous subnetworks like our brain which is not homogenious but has a well structured feature. Europe has to develop regional network spaces. Highly decentralised systems might become attractive when technology permits them.

3. It will be the art of the regulator to fix fair prices and to rule the access to the grid. His tasks will gradually extend to environmental issues.

4. The best regulation is selfregulation. But in reality it tends to become a bureaucratic burden. We therefore need to harmonize the different certificate systems (CO2-certificates, green certificates, white certificates, etc.). The national systems must become compatible with each other, the certificates have to become tradable in the Common Market.

5. Climate policy imposes strict limitations to our greenhouse gas emissions. Emissions trading will not suffice for bringing emissions down. At the end we might even have to intervene in the energy mix, a topic still left to the EU member states.

6. Regulation might one day even refer to the nuclear sector. What about the decommissioning funds? Or the waste disposal? Will we have commonly accepted safety rules and standards? These questions remain unanswered.

Conclusion

The deregulation of the energy market allows competition in the electricity and gas sector. But after a dynamic phase of deregulation we are now moving towards an era of new regulation, imposed by our competition rules, safety aspects, renewables and our environmental needs.

The risk of a short sighted, strictly profit oriented policy cannot be overlooked. In order to secure the necessary investment in new networks and power stations, in order to increase research and development of new technologies, profits must be high enough to finance these investments. There is a clear relation between black-outs and investment. Public opinion must be prepared that low energy prices are not the only objective of our competition policy.

Regulation needs to be as transparent and as economically elegant as possible in order to avoid bureaucracy. We have to find new mathematical models of selfregulation.

As in the past unforeseen shocks might happen oil shocks, price shocks, environmental catastrophies, black-outs, etc. We have to act in advance to reduce the impacts of possible hazards if we cannot avoid them. After each event public opinion asks the nation states and the EU to take countermeasures, in other words to intervene and regulate. If industry wants to reduce regulation to a bearable degree it has to join its efforts to avoid the avoidable incidents.
Executive Director, International Energy Agency, Paris Abstract
For most members of the OECD, the growing rigidity of oil demand, expanding international trade and increasing reliance on imports from distant, often politically-unstable parts of the world will exacerbate the risks and costs of oil-supply disruptions in the coming decades. Rapid worldwide growth in natural gas consumption and trade will foster similar concerns. And liberalisation of gas and power markets, while beneficial to economic efficiency, is giving rise to new concerns about the reliability of energy supply. For all fuels, ensuring energy security  reliable energy supplies at affordable prices  will require massive and timely investment. Governments will need to reassess the adequacy and effectiveness of their energy policies on both the supply and the demand side in meeting their energy security goals.
Uncertainty in the Oil Market
Recent energy-market and geopolitical developments, including rapid growth in demand, diminishing spare oil-production capacity and surging oil prices, have thrust energy security back to the top of many countries policy agenda. The terrorist threat combined with political instability and conflict in key producing regions, notably the Middle East, has highlighted the dangers of becoming overly dependent on imports of oil. At the same time, rapidly growing trade in natural gas, power failures in North America and in several European countries and incidents at Japanese nuclear reactors demonstrate that other forms of energy are not immune to security concerns and that governments must play a central role in ensuring reliable supplies and investment. Long-term energy trends suggest that these concerns will become more urgent and will call for stronger policy responses on the part of OECD countries and the rest of the world.
Oil prices have risen dramatically and oil markets have been volatile in recent years. Strong growth in demand, shrinking spare production, refining, and transportation capacity and geopolitical uncertainties have contributed to high prices while a lack of market transparency has amplified volatility. The world s vulnerability to oil-supply disruptions will only increase as demand becomes more and more rigid, international trade expands and reliance on imports from a decreasing number of large oil-producing nations grows. According to the IEA s latest World Energy Outlook - Reference Scenario, in the absence of new government policies, global primary oil demand is set to expand by 1.6% per year, reaching 121 mb/d in 2030. Demand will continue to grow most quickly in developing countries. The bulk of the growth in global demand will have to be met by imports. Oil use everywhere will become ever more concentrated in transport in the absence of readily-available substitutes.
Oil supply will also become less diversified and less flexible. A small group of countries with large reserves, primarily Middle East members of OPEC and Russia, have the reserves to meet most of the global increase in oil demand. By 2030, OPEC could supply well over half of the world s oil needs  an even larger share than in the 1970s. Net inter-regional oil trade will more than double to over 65 mb/d in 2030, or more than half of total oil production. All the world s largest oil-importers  including most OECD countries, China and India  will become even more dependent on imports, while Indonesia, recently an exporter, will become a major importer. OECD oil imports are set to rise from 63% of total demand in 2002 to 85% in 2030.
Booming international oil trade will strengthen the mutual dependence among exporting and importing countries. But it will also exacerbate the risks that wells, pipelines or sea lanes could be closed or blocked by terrorism, piracy, or by accidents at critical chokepoints. Each day, 15 million barrels pass through the Straits of Hormuz and 11 million barrels through the Straits of Malacca in Asia. Traffic through these and other vital channels will more than double over the next two-and-a-half decades. A disruption in supply at any of these points could have a severe impact on oil markets, especially at times when there is little spare production capacity. It is clear that maintaining the security of international sea-lanes and pipelines will take on added urgency.
The Security of Gas and Power Supplies
Increasing dependence on imports of natural gas in Europe, North America and other regions will heighten concerns over gas-supply security. IEA countries import dependency is expected to rise from 20% now to over 40% in 2030. In particular, Europe is highly import-dependent on only two sources, Russia and Algeria. The recent disruption in liquefied natural gas supplies from Indonesia demonstrated the risks of relying on imports of gas from politically sensitive regions. On the other hand, the expected expansion of international LNG trade could alleviate some of the risks of long-distance supply chains if it leads to more diversified supplies. Increased short-term trading will also make LNG supplies more flexible.
Liberalisation of downstream gas and electricity sectors has brought economic benefits, but also raises concerns about energy security. In promoting efficiency and increasing the diversity of supply, market reforms should, in principle reinforce energy security. But this depends on the design of those reforms and the incentives for investors to provide the degree of security demanded by consumers. Pressures only to reduce costs could compromise security.
Long-Term Energy Security Requires Adequate and Timely Investment
Long-term supply security will depend on whether the investment needed to expand energy-supply capacity will be forthcoming in a timely manner. The latest World Energy Outlook estimates that $16 trillion of cumulative investment will be needed from 2003 through to 2030 to maintain and expand energy supplies  almost $10 trillion in the electricity sector alone. The bulk of the projected $4 trillion of upstream oil and gas investment will be needed simply to maintain existing production capacity. Most investment will be needed in developing countries, where access to capital is difficult and risks are high. This investment is unlikely to materialise without more attractive returns than are currently available to draw a huge increase in capital from industrialised countries. Conversely, access of capital to oil and gas reserves is restricted or difficult in those countries where the bulk of the world s reserves are located. Information about reserves is, in many cases, deficient. If the required investment is not forthcoming, supply will lag demand, bottlenecks will emerge and energy prices will inevitably rise.
Energy Security and Sustainability
One other aspect of energy security is that it must be sustainable  a balance must be found with environmental and economic concerns. For example, energy production and consumption is responsible for more than eighty percent of carbon emissions. Because these emissions are recognized as a key contributor to climate change, steps must be taken to curb them. But there is no  silver bullet that will transform the energy outlook  all possibilities must be explored. Improved energy efficiency, including a wide range of technologies that are already available, can make a big difference. Technologies do exist that together have the potential to diversify the sources of energy and stem the growth of CO2 emissions. But changes to the basic infrastructure, even with technologies that are already proven, take time and investment and will only happen if the market incentives are right and the product is competitive. That is why starting these changes now is so vital if future generations are not to be locked into an inefficient and high carbon energy cycle.

Governments Must Act
These developments point to a need for governments to exercise leadership worldwide in dealing with the energy-security risks in fossil-fuel trade. Building and maintaining strategic oil stocks and being prepared to use them in case of supply disruption is a key safety net. Measures to address short-term supply emergencies or price shocks will have to be improved. Relations with energy suppliers will also need to be strengthened. Governments will have to look anew at ways of diversifying their fuels, as well as the geographic sources of those fuels. But, now and in the future, stronger demand-side policies to reduce energy use through conservation and improved efficiency are essential. Governments will also need to devise new, cost-effective approaches to securing reliable gas and electricity supplies within a competitive market framework. In particular, they will need to lower regulatory and market barriers and ensure that the investment climate is sufficiently attractive within a stable and transparent market framework. Worldwide, NIMBY resistance to energy-related investments is increasing, which means that public awareness on energy security issues needs to be strongly improved, another government task.
Chairman, Mondi AG; Chief Executive Officer, Mondi Europe & International, Vienna
CEO and Chairman of the Executive Board, OMV, Vienna Abstract
 Primary Energy Outlook: Supply Challenges for the Oil & Gas Industry

Abstract:
Energy systems operate under different conditions and development levels, but each well constructed energy system needs security, should guarantee profitability and care for the environment. Security of supply is  not for the first time  at the top of the priorities.

The dynamic growth of energy demand  well described in the 2004 s World Energy Outlook of IEA is evident. Even a moderate growth rate of 1.7 % p.a. - well below the expected worldwide GDP-growth  could lead to an additional demand of 6 billion tons of oil equivalent from 2002 to 2030. Two thirds of this additional demand should be covered by oil and gas. The oil and gas industry managed all the supply challenges, constraints, crises and price volatilities in the past, but would this apply for the future, too?

Surprises, both on the demand and supply side - with China absorbing 1/3 of oil demand growth 2002-2004 and OPEC s spare capacity eroding from 5 to 1 Mio bbl/d - feed not only prices but also fears that the end of the oil age is in sight. However, mid-term views demonstrate that capacity build-up would relieve some pressure on the supply/demand balance within this decade.

Looking to the abundant reserves of conventional oil and the huge amount of untapped unconventional hydrocarbons, the oil industry sees the constraints more in the limited access and in the problematic conditions for investments than in physical resources or technology.

So the key issue is the transformation of proven reserves into production, coming from new areas like West-Africa or Caspian Sea, from new frontiers, like water depths deeper than 1000 meter, from unconventional production of oil sands, oil shale or extra heavy oil. But the most promising source will be efficiency - not only on the demand side, but also on the supply side. There is a potential to improve the recovery factor of existing reservoirs from 35 % to 50 % and more. An improvement of 1 % equals today s annual energy consumption of the world.

The industry has to accelerate investment for exploration & production to more than 200 bn USD annually, significantly more than in the past. In order to meet the additional demand on hydrocarbons and the call for more security of supply, also new and expensive infrastructure has to be built. The globalisation of the gas market due to growing LNG-volumes and new supply routes for natural gas  like the Nabucco pipeline project  could meet these future needs. But projects with such a remarkable fiscal and geopolitical dimension have to find stable international partnerships, sound financial structure and a competitive legal framework.
Chief Executive Officer of Verbund, Vienna Chair
Vice Chairman, Verbund/Sabanci Steering Committee Vice Chairman of the Board, Enerjisa Group of Companies ENERJ0SA ENERJ0 ÜRET0M A.^. Coordination

Dr. Georg ANTESBERGER

Mitglied des Vorstandes, Siemens AG Österreich, Wien

1974 Abschluss d. Studiums der Physik und Mathematik, Universität Innsbruck
1970-1978 Wissenschaftlicher Mitarbeiter der Kernforschungsanlage Jülich/BRD
1978-1980 VEW Ternitz - Projektleiter Nukleartechnik
1980-1987 VOEST ALPINE AG - Vertriebsleiter Kerntechnik/Apparatebau
1987-1989 VOEST ALPINE AG - Geschäftsfeldleitung Wärme- und KW-Technik
1989-1992 SGP VA Energie- und Umwelttechnik GmbH - Mitglied d.Vorstandes
  Transmission & Distribution
1992-1998 ELIN Energieversorgung GmbH - Mitglied d. Vorstandes / Ressort Power Generation/Power
  VA TECH ELIN EBG
1998-2002 VA TECH AG - Mitglied d. Vorstandes / Ressort: VA TECH Hydro, VA TECH T&D, VA TECH Wassertechnik,
seit 2003 SIEMENS AG Österreich - Mitglied des Vorstandes / Ressort PTD/PG, REG

Dr. Brenda BOARDMAN

Leader of Lower Carbon Futures, Environmental Change Institute, University of Oxford

 Brenda is head of the Lower Carbon Futures team. Her main research focus is on energy efficiency and the way that energy is used in British homes, particularly by low-income households, i.e. fuel poverty. She considers the economic, social and technical aspects of the subject and her work has a strong policy emphasis. She has been a member of the DTI's Energy Advisory Panel and is widely viewed as one of the most experienced in her field.
 Brenda has a leading role in the new UK Energy Research Centre (UKERC), which launched this October. Brenda and her team s research focus on demand-side energy issues in the UK. In addition, as part of the UKERC, Oxford University and the Environmental Change Institute are hosting the Meeting Place , which will bring together national and international energy experts to discuss and debate energy topics.
 Brenda's other major projects include the 40% House Project (funded by the Tyndall Centre) and Carbon Vision = Building Market Transformation (funded by the Carbon Trust and ESPRC - Engineering and Physical Sciences Research Council). Both projects are looking at how dramatic reductions in greenhouse gas emissions can be achieved in the built environment by 2050.
 Brenda also teaches on the MSc Environmental Change and Management.

Dipl.-Ing. Walter BOLTZ

Vorstand, Energie-Control Austria, Wien

1971-1976 Studium der Technischen Physik an der Technischen Universität Wien
1976-1991 Leitung einer österreichischen Gesellschaft einer internationalen Beratungsgruppe
1991-1996 Nach dem Studium mehrere Jahre in verschiedenen Funktionen im EDV-Bereich einer österreichischen Bankgruppe tätig, danach 10 Jahre Leitung der österreichischen Gesellschaft einer internationalen Beratungsgruppe mit Schwerpunkt Management - und Technologieberatung
1991-1996 Tätigkeit für eine große österreichische Kommerzbank in Mittel- und Osteuropa, Umstrukturierung u.a. von Energiebetrieben
1996-1999 Mitglied der Geschäftsleitung eines großen Deutschen Beratungsunternehmens
 seit 2001 Geschäftsführer der Energie Control GmbH
1999-2001 Mitglied der Geschäftsleitung von PricewaterhouseCoopers Management Consulting; zuständig für den Bereich "Energy & Utilities"
seit 2011 Vorstand der Energie Control Austria

Dipl.-Physik. Dr. Rolf LINKOHR

Special advisor to the Commissioner for Energy and Former Member of the European Parliament, Stuttgart

1960 Abitur
  Aberdeen/ Schottland (dort Stipendium der EMBO-European Molecular Biology Organization);
  Industrietätigkeiten bei Bosch (Stuttgart-Feuerbach) und Lavalette (Paris); Promotion über die
  Kinetik von Ionenaustauschern.
ab 1961 Studium der Physik und der Physikalischen Chemie an den Universitäten Stuttgart, München und
1964 Eintritt in die SPD
1970-1971 Sprecher der baden-württembergischen Jungsozialisten
ab 1970 Forschungsmitarbeiter bei der Deutschen Automobil GmbH (DAUG)/Esslingen-Mettingen (Wasserstoffspeicherung, Entwicklung neuer Batteriesysteme)
1971 Beitritt zur IG Metall; 1974-1979 Betriebsratsvorsitzender
1979-2004 Mitglied des Europäischen Parlaments
seit 2003 Mitglied des SPD-Parteirats

Claude MANDIL

Executive Director, International Energy Agency, Paris

 Mr Mandil is a graduate of France s Ecole Polytechnique and Ecole des Mines.
1981-1982 Technical Advisor in the French Prime Minister s cabinet
1983-1988 CEO of the Institute for Industrial Development (IDI)
1988-1990 Director General of Bureau of Mines and Geology (BGRM)
1990-1998 serving as Director General for Energy and Raw Materials at the Ministry of Industry, Post and Telecommunications
1991 Mr Mandil was instrumental in arranging for France to become a member of the IEA
1991-1998 represented France at the Nuclear Safety Working Group of the G7
 Before joining the IEA in 2003, Mr Mandil was Chairman and CEO of the Institut Français du Pétrole and, previous to that, Managing Director of Gaz de France.
 Current: Serving a four-year term as Executive Director of the International Energy Agency, based in Paris. This post climaxes his commitment to international co-operation in energy affairs, in parallel with his career as a distinguished French civil servant.
1997-1998 served as the IEA Governing Board Chairman

MMag. Peter J. OSWALD

Chairman, Mondi AG; Chief Executive Officer, Mondi Europe & International, Vienna

1981-1986 Studies of Business Administration, Business School, University of Vienna, Austria; finished with Master
1981-1986 Studies of Law, University of Vienna, Austria; finished with Master
1986-1989 Managing Director University Publishing House (WUV-Universitätsverlag), Austria
1989-1990 Deutsche Bank, Germany
1990-1992 Purchasing and Logistics Manager, KTM, Austria
1992 Head Internal Audit, Frantschach-Group (incl Neusiedler), Austria
1993 Corporate Controller, Frantschach-Group (incl Neusiedler)
1994 Managing Director Bates Cepro, Netherlands
1995-2001 Chief Executive Officer, Frantschach Packaging Converting
2002-2007 Chief Executive Officer, Mondi Packaging Europe
since 2008 Chief Executive Officer, Mondi Europe & International; Executive Director of the Board Mondi plc and Mondi Ltd

Dr. Wolfgang RUTTENSTORFER

CEO and Chairman of the Executive Board, OMV, Vienna

 Doctoral Studies at the University of Economics and Business Administration in Vienna
1976 started to work at OMV
1985 joined the Planning and Controlling Department
1989 took responsibility for the Strategic Development of the Group
1990 appointed Head of Marketing
1992-1997 Executive Board, responsible for Finance and Chemicals
1997 became Deputy Minister of Finance
2000 rejoined the OMV Executive Board being responsible for Finance
since 2002 CEO and Chairman of the Executive Board

Dipl.-Ing. Hans HAIDER

Chief Executive Officer of Verbund, Vienna

 Studies of communication engineering at the Technical University of Vienna, second diploma (top grades) 1968.
 Several Management positions within Siemens.
1988 Executive Program at the Graduate School of Business of the Stanford University, USA
  Siemens AG with world-wide responsibility
1989 Member of the managing board of Siemens AG Austria and CEO of the business unit "audio-video systems" of
since 1994 Chairman of the Managing Board and CEO of Verbund (Österreichische Elektrizitätswirtschafts-Aktiengesellschaft)

Technologiegespräche

Timetable einblenden

25.08.2005

10:00 - 12:00Technologiebrunch gesponsert durch die Tiroler ZukunftsstiftungSocial
13:00 - 14:00EröffnungPlenary
14:00 - 15:30Unsere ZukunftPlenary
16:00 - 18:00Wissenschaft und Forschung - eine globale Neuordnung der Standorte?Plenary
20:00 - 21:00SicherheitPlenary
21:30 - 23:45Abendempfang gesponsert durch Alcatel AustriaSocial

26.08.2005

09:00 - 15:00Arbeitskreis 01: Technologie- und Standortstrategien für UnternehmenBreakout
09:00 - 15:00Arbeitskreis 02: Elektronik im AutomobilBreakout
09:00 - 15:00Arbeitskreis 03: Die Wissenschaft in Produkten des täglichen GebrauchsBreakout
09:00 - 15:00Arbeitskreis 04: Sicherheit der EnergieversorgungBreakout
09:00 - 15:00Arbeitskreis 05: NanotechnologieBreakout
09:00 - 15:00Arbeitskreis 06: Vom Wissenschaftsjournal zur Schlagzeile: Wissenschaft und die MedienBreakout
09:00 - 15:00Arbeitskreis 07: Wasserstoff - Zukunft des Verkehrs?Breakout
09:00 - 15:00Arbeitskreis 08: Europäische Strategien für internationale ForschungskooperationenBreakout
09:00 - 15:00Arbeitskreis 09: Exzellenz - eine Frage des GeschlechtsBreakout
09:00 - 15:00Arbeitskreis 10: Converging technologiesBreakout
16:00 - 16:45Zusammenarbeit Universität und Industrie - Die atlantische SituationPlenary
16:45 - 17:30Zusammenarbeit Universität und Industrie - Die österreichische LösungPlenary
17:30 - 18:00Zusammenarbeit Universität und Industrie - Politische SchlussfolgerungenPlenary
18:00 - 20:00Empfang gesponsert durch Land NiederösterreichSocial
20:00 - 21:00Wissenschaft und Technik für Venedig - Konzepte zur Bewahrung des WeltkulturerbesPlenary

26.08.-27.08.2005

Junior AlpbachBreakout

27.08.2005

09:00 - 10:30Politik und WissenschaftPlenary
10:30 - 11:30Wissenschaftliche ExzellenzPlenary
12:00 - 12:15Alpbach 2005 - Resümee Junior AlpbachPlenary
12:15 - 13:00Reflexionen und PerspektivenPlenary
13:00 - 14:30Schlussempfang gesponsert durch Microsoft ÖsterreichSocial