to Content
Header Image

09: The five senses

Breakout / Working Group
english language

The five senses are human beings’ interface to the world surrounding them. Without them, we could not in any way experience or conceive it. The senses have been developed by evolution through an adaptive, self-organizing process; a classical example for an emergent phenomenon. Human beings have always tried to expand their senses, in order to make ‘sense’ of creation, among other reasons. Thus, any (falsifiable) scientific field is based on experiments, which are nothing else than highly expanded senses in part. At the moment we find ourselves at a threshold: not only do we expand the senses by technical devices but we also try to enhance and replace them directly on human beings. The senses in their special shapes are an elementary part of all interactions between humans and form the core of understanding in human societies. In this working group we will dwell on the topic ‘five senses’ with regard to the above-mentioned aspects engaging five experts in their fields. In connection with the visual sense we will see how senses can be restored in humans directly. The sense of hearing will lead us to communication and we will elaborate consequences for societal interactions. The topic of smelling will deal with the fascinating opportunities for finding new technological applications; and in connection with the sense of touch we will learn about the interaction of senses and its imaging in the brain. Finally, we will hear about the sense of taste by ‘molecular gastronomist’. Through various statements we will try on the one hand to cover secondary phenomena of senses like e.g. aesthetics, and on the other we will try to answer the question what information – as the basic input for all our senses – is about after all.


Professor emeritus für experimentelle und klinische Otolaryngologie, Medizinische Universität Wien Abstract
The human language is the most sophisticated signalling system in nature.

Signalling is a dynamic process involving the signaller and the receiver, as well as the signal that flows between them. The signaller transmit the message, the receiver interprets the message in a given context and responds in turn.

In biology, there is a fundamental capacity to respond appropriately to external signals, from finding foot to avoiding harm. Unicellular organisms have adequate receptors directly coupled to motor substructures of the cells.

In multicellular organisms, the interposed nervous system provides the necessary precision and velocity of signal transfer between receptors and effectors.

Receptors transduce adequate external stimuli into the bioelectrical signals of the nervous system.

In verbal communication, the inter-individual information flow is coded in form of adequate signal fluctuations of the air pressure, emitted by the human vocal motor apparatus. After spatial propagation of the sound waves, the mechano-electrical signal transduction machinery in the receiver s ear allows a highly complex preprocessing in speech discrimination resulting in stochastic electrical spike trains in the auditory neurons.

It is generally accepted, that the selective force of speech-related neuronal signal flows shaped crucially the evolution of the human brain and the epiphenomenon of consciousness. Without language, complex humans societies could certainly not have emerged. The arrival of language was linked with the development of culture which was something totally new in the living world.

The mechano-electrical transducers of the inner ear are the most delicate structures of the communication circuit. They are very vulnerable during ontogenesis and, in the post natal life, to long lasting and excessive activations. Clinical consequences are (noise induced) tinnitus, acute and/or progressive hearing loss, speech discrimination disorders, and deafness. A biological restauration of normal functions following injury are extremely rare.

The cultural evolution of man developed medical and technical approaches solving this problem. Hearing aids and implantable mechano-electrical transducers ("cochlea implants") provide the (re-) integration of auditory handicapped people into society. The successful man-machine-interfaces are human, cultural artefacts.

As shown in this example, we are no longer formed merely by biological evolution. The alternative emergence of cultural evolution of humans is thought to be basically linked to speech and the sense of hearing.
Chair of the Department Cell Physiology, Ruhr-University Bochum Abstract
Scents indicate things, make promises, attract attention and stimulate imagination, feed anxieties and hopes: they are the salt in the atmospheric soup. We regard seeing and hearing as more important sensory functions, because they contribute more to conscious, cognitive processes of perception - but at moments of the greatest enjoyment we close our eyes and taste the scent, smell the taste. Before the spirit and beauty of a person can fascinate us, our nose must become infatuated.

It has been only about ten years since science became interested in the molecular processes by which we distinguish, for instance, the fragrance of a rose from the odour of an orange, or why we become adapted to odors so that after only a short time we no longer detect them.
In the past decade scientists were able to fully describe the molecular and cellular processes in human olfaction which permit us to recognize and discriminate a large number of different odor molecules, even at extremely low concentrations.

The chemical odor stimulus (odorant) is converted into an electrical signal in the cell by way of a cascade-like biochemical amplification mechanism. Each odour molecule must first find a specific receptor protein on the surface of the sensory olfactory cell and become docked to it. Then the receptor employs so-called G proteins as mediators in order to activate an enzyme (adenylyl cyclase). This enzyme can produce large amounts of cyclic adenosine monophosphate (cAMP) as second messenger (amplification). The cAMP molecules now act directly within the cell membrane to change the structure of channel proteins, shaping them into an open tube through cations (Na+ and Ca2+) can flow from the nasal mucosa into the cell; as a result the cell gets excited and produces currents, which are conducted along the neuronal process of the olfactory cell into the brain.

Most of the natural odors, such as flower, food or wine scents consist of hundreds of individual chemical components. So how can we tell a scented flower from perfume? When we inhale such a complex mixture, out of the ca. 350 different types of olfactory sense cells the only ones to be activated are those bearing receptors for one of the chemicals it contains. Neuroanatomical and immunohistochemical data have shown that all the sensory cells that have the same receptor proteins, wherever these cells may be in the nose, send their neural processes to one and the same glomerulus in the olfactory part of the brain.

In other words, when we smell a mixture of several chemical components, correspondingly a reproducible but complex pattern of glomeruli are activated. These data provide direct support for a model in which a topographic map of receptor activation encodes odor quality in the olfactory bulb. The different activation pattern represent different odor stimuli and allow to discriminate for example different types of for example flowers. The rose activation pattern is clearly distinct from the jasmine pattern.

In psychology this representation by a particular shape could be described with the terms "odor gestalt" or "gestalt recognition". Once we have learned an odor, we can recognize it again even though some of the information it normally contains may be lacking. The severely reduced scents that are artificially produced take advantage of this fact.

Recently we could characterize the first two of the 350 human olfactory receptors by isolation, cloning and functional expression in human kidney cells. The first of these receptors, named OR17-40 responded to Helional and exhibits a remarkable ability to discriminate structurally closely related molecules, smelling like a fresh sea breeze. The second human olfactory receptor identified, named OR17-4 was activated best by Bourgeonal, smelling like lilly of the valley. The molecular receptive field of OR17-4 was determined using Bourgeonal as a template. We were able to define a detailed molecular receptive range for this receptor. In contrast, Undecanal was identified as a potent and specific blocker of Bourgeonal and related compounds. In addition our newest data prove that the same olfactory receptor protein is similarly utilized to fulfill chemosensory functions in such diverse cell types as olfactory sensory neurons and spermatozoa. Parallel we show for the first time that peripheral detection and conscious perception of an odorant can be specifically inhibited by prior exposure to an antagonist.
Fachärztin für Plastische und Wiederherstellungschirurgie,Wien Abstract
Vier organische Auszeichnungen unterscheiden den Menschen von allen anderen Lebewesen: das Lächeln, die Sprache, der Gang und die Hände.

Die Anlage der oberen Extremität lässt sich bereits bei menschlichen Embryonen von 3 mm SSL als ein zarter seitlicher bogenförmiger Wulst erkennen.
Bei einem Embryo von 8 mm SSL sind erste Anzeichen einer Untergliederung der Armanlage in einen Handteller und Unterarm zu sehen. Andeutungen der Mittelhand und Fingerstrahlen werden bei Embryonen von 12-15 mm gesehen. Im Mesoderm werden Knorpel differenziert. Neben der Proliferation ist die Zelldegeneration von morphologischer Bedeutung. Bei einem Embryo von 17,5 mm Länge kommt es zum programmierten Zelltod und lassen sich interdigitale Nekrosen feststellen. Dadurch entwickeln sich die einzelnen Finger.
Die Skelettmuskelzellen wandern in die Extremitätenanlage aus fünf Segmenten ein. Diesen folgen die Nerven, die ursprünglich aus C4-C8, später aus C5-Th1 stammen. Wird das Einwandern der Muskelzellen verhindert, so enthält die Extremität wohl Muskelbindegewebe, jedoch keine Muskelzellen.

20 verschiedene Muskeln drängen sich am Unterarm auf relativ beschränktem Raum zusammen. Die Muskulatur liegt im proximalen Teil des Unterarms. Die Muskelfasern sind relativ kurz. Die Muskelbäuche gehen sehr früh in Sehnen über. Diese erreichen vom Arm aus wie Transmissionsriemen die Finger. Die Sehnen setzen an den Fingern an und können demnach immer auf alle Gelenke wirken. An der dorsalen und palmaren Seite der Handwurzel sind ganz bestimmte Führungen für die Sehnen angebracht, welche dafür sorgen, dass die eine Hauptgruppe dorsal, die andere palmar liegen bleibt und dass jeder Einzelmuskel seine ihm zugewiesene Lage behält.
Der Handteller ist der Träger der kurzen Handmuskeln, welche mit Sehnen bis zu den Fingern reichen und welche selbst auf ein Minimum an Raum und Größe reduziert sind, um die Hand möglichst zu entlasten. Die Finger sind schlank und bestehen nur aus Haut und Knochen. Die Spezifikation der Finger wird von keinem anderen Teil des Körpers auch nur annähernd erreicht. Sie sind den Greifklauen der Technik, der Krebsschere und anderen Apparaten ähnlicher Art bei Tieren, was Vielseitigkeit des Greifens angeht, ganz außerordentlich überlegen. Die Finger spielen eine große Rolle als Ausdrucksmittel.
Von den 210 Knochen des menschlichen Körpers gehören allein 54 zu beiden Händen: 8 Handwurzelknochen, 5 Mittelhandknochen, 14 Fingerknochen.
An den Fingerleisten münden etwa pro cm2 400 Schweißdrüsen, das Muster der Hautleisten ist angeboren und einzigartig. Die normale Schweißabsonderung begünstigt mit den Rauhigkeiten der dermalen Leisten das Greifvermögen der Hand.

Hand als Sinnesorgan
Durch die große Anzahl von Rezeptoren kann die Hand als Sinnesorgan bezeichnet werden. Nervenendigungen können frei enden oder in Form spezialisierter Körperchen oder können wie die Merkelzellen auch zwischen den spezifischen Zellen und den Nervendigungen Synapsen aufweisen. Die Fingerleisten dienen dazu, Tastempfindungen an die tiefer in der Haut liegenden Rezeptoren weiterzuleiten und dadurch die Sensibilität zu erhöhen. Zu den Hautsinnen gehören die Mechanorezeptoren, die auf Druck reagieren, die Thermorezeptoren, die Kälte und Wärme vermitteln, und Schmerzrezeptoren. Vibrationsempfindungen werden über Vater Paccinische Körperchen vermittelt. Die Vibrations- und Tiefensensibilität hängen eng zusammen. Die Fähigkeit, Objekte ohne sie zu sehen durch Befühlen zu erkennen, wird Stereognosie genannt. Sie hängt von intaktem Druck- und Tastgefühl ab, obwohl auch eine kortikale Komponente notwendig ist.
An der Fingerbeere können bis zu 23 Tastkörperchen pro mm2 Haut gezählt werden. Die abnehmende Rezeptordichte nach proximal hat eine abnehmende Diskriminationsfähigkeit zur Folge. An der Dorsalseite der Hand, verglichen mit der Palmarseite, ist eine dreifach niedrigere Diskrimination vorhanden. Die Tastkörperchendichte nimmt kontinuierlich mit dem Alter ab. Ob die Abnahme der Rezeptordichte eine Auswirkung auf die Spinalganglien oder die zentralen somatosensorischen Systeme hat, weiß man noch nicht. Für die Repräsentation der Hand zentral gilt, dass die palmare Handfläche ein wesentlich größeres kortikales Areal einnimmt als die dorsale Handfläche und dass außerdem die distalen Fingerbereiche eine kortikale Repräsentation einnehmen, die etwa so groß ist, wie für die restlichen Fingerglieder zusammen. Alle Fäden für das koordinierte Spiel der Finger, Sehnen und Muskel und Knochen laufen im Gehirn zusammen. Rund ein Drittel jener Hirnmasse, die zur Steuerung aller beweglichen Körperteile notwendig ist, wird von den Händen beansprucht. Ein kompletter Fuß kommt in der Zentralwindung unseres Denkapparates mit einem Platz aus, den allein schon zwei Finger benötigen. Neben der Zunge haben die Finger im Gehirn die größten sensorischen Repräsentationsareale. Die vielfältigen Informationen aus der Außenwelt werden dem Zentralnervensystem über eine Vielzahl von Sinnesrezeptoren vermittelt. Diese Rezeptoren wandeln verschiedene Aktionspotentiale in den Neuronen um, die einzelnen Sinnesrezeptoren sind jeweils auf eine bestimmte Energieform spezialisiert. Die von den Sinnesorganen ausgehenden, Richtung Hirn laufenden afferenten Fasern enden an Zwischenneuronen. Hier sind zahlreiche synaptische Reflexverbindungen vorhanden, die einerseits Richtung Hirnrinde, andererseits jedoch in die Peripherie gehen. Die Neurone werden z.T. Richtung Thalamus weitergeleitet. Von den spezifischen sensorischen Kernen im Thalamus gelangen Projektionsfasern in somatosensorische Areale der Hirnrinde. Es bestehen detaillierte Repräsentationen einzelner Körperteile, und die Größe der Projektionsflächen entspricht der Anzahl der Rezeptoren in verschiedenen Körperregionen. Deshalb sind die Areale für die Hand, da die Hand sehr viele dieser Rezeptoren hat, so groß. Das bewusste Erfassen der Lage der Körperteile im Raum hängt von den Impulsen aus Sinnesorganen ab, die in und um die Gelenke lokalisiert sind.
Professor, Institut für Theoretische Physik, Technische Universität Wien Abstract
Every work of art can be seen as a structure created by the artist and needing decryption and understanding from the audience. Thus human aesthetics can be developed as a function of decryption. Decryption is analyzed in terms of computation, thus providing some principles for appealing designs. While too condensed coding makes a decryption of a work of art impossible and is perceived as random and chaotic by the untrained mind, too regular structures are perceived as monotonous, too orderly and not very stimulating. It is also argued that, due to human predisposition, aesthetics is inevitably based on natural forms, thus providing some guidelines for acceptable degrees of complexity as interpreted by algorithmic information density. And it is interesting to note that different forms of contemporary art have developed differently: wherever the costs of complexity are relatively low, such as in music or painting, the complexity increased, resulting in random, incomprehensible creations whose consumption requires repetition and effort. Whenever the expenses are high, such as in architecture and still even in virtual space, the complexity has decreased or remains low, mostly connected to the pressure of cost and the scarcity of resources.
Professor, Molecular Gastronomy Team, Institut des sciences et des industries du vivant et de l environnement (AgroParisTech) and Laboratoire de Chimie des Interactions Moléculaires, Collège de France, Paris Abstract
These days when we ask ourselves 'what shall I eat?' the answer might range from indulging in a gourmet meal to simply popping a pill. So does this mean that chemistry is responsible for a decline in cooking today? The answer is no, in part because all cooking has three vital ingredients that no pill-popping can possibly emulate. First there is technique - a soufflé has to rise, otherwise it would be a pancake. Next, art - a soufflé without taste is nothing, just as there is no music if there are fingers and a piano but no song to play. Then finally, and perhaps most crucially, a social component is to be considered- even the very best soufflé is nothing if thrown in the face of the eater.

'Molecular Gastronomy' is the scientific discipline created in 1988 by Hervé This and Nicholas Kurti that is taking the culinary world by storm. An approach that is not about technology, nor technique, rather about using science to research and explore the mechanisms of cooking in general. Did you know that all recipes comprise two parts, a definition and additions - culinary precisions - which cover all of the old wives tales, proverbs, methods and tips etc that all cooks pick up along the way? Using experiments and demonstrations to investigate these two parts, Hervé This will show how art can make direct use of the applications of science to create a wonderful marriage of science et cuisine.
Vorstand, Universitäts-Augenklinik, Medizinische Universität Graz
Professor and Head, Section for Science of Complex Systems, Medical University of Vienna; President, Complexity Science Hub Vienna Chair
Geschäftsführer, Industriellenvereinigung Wien Coordination


Professor emeritus für experimentelle und klinische Otolaryngologie, Medizinische Universität Wien

1956-1962 Medical student at the Universities of Graz and Vienna, Austria
1962 Graduation as M.D. from the University of Graz, Austria
  Erlangen/Nürnberg, Germany
1963-1966 Assistant Professor at the Institute for Physiology and Biocybernetics (Head: Prof. W.D. Keidel) of the University of
  (Head: Prof.K. Akert) of the University of Zurich, Switzerland
1966-1968 Fellowship of the International Brain Research Organisation of the UNESCO at the Brain Research Institute
  University of Zurich, Switzerland
1968-1972 Trainee in the field of Otorhinolaryngology in the Department of Otorhinolaryngology (Head: Prof. U. Fisch) of the
1970-1971 Associate Professor of Neurophysiology at the Institute of Psychology of the University of Konstanz, Germany
  Technology and Mass. Eye and Ear Infirmary, Boston, Mass., USA
1972 Research Fellow at Eaton-Peabody Laboratory of Auditory Physiology (Head:Prof. N.Y.S. Kiang), Mass. Institute of
  University of Vienna, Austria
1973-1983 Assistant/Associate Professor at the Second Department of Otorhinolaryngology (Head: Prof. K. Burian) at the
1975 Acquisition of University lecturing qualification for General Otorhinolaryngology
  Paris, France
1978-1979 Fellowship from the French Government at the Institute Gustave-Roussy (Head: Prof. Y. Cachin) at Villejuif,
1979 Diploma for Head-Neck-Oncology from the University Sorbonne, Paris, France
1983 Head of the First Department of Otorhinolaryngology of the University of Vienna, Austria
1987-2002 Honorary Professor at the Institute of Neurobiology (Head: Prof. D. Felix) of the University of Berne, Switzerland
2004 Head of the Department of Otorhinolaryngology of the Medical University of Vienna, Austria
since 1999 Member of the National Health Board of Austria
since 2006 Emeritus

DDDr. Hanns HATT

Chair of the Department Cell Physiology, Ruhr-University Bochum

1967-1972 Studies of Biology and Chemistry, Ludwig-Maximilian-University Munich
1972 Diploma in Biology and Chemistry, Ludwig-Maximilian-University Munich
1976-1981 Study of Medicine, Ludwig-Maximilian-University Munich
1976 Promotion (Dr. rer. Nat.) Ludwig-Maximilian-University Munich
1983 Promotion (Dr. med.) Technical University Munich
1984 Habilitation (venia legendi) for Physiology, Technical University Munich
1985-1991 Assistant Professor at the Physiological Institute of the Technical University of
  Technical University Munich
1991-1992 University Professor (C3) at the Physiological Institute of the Klinikum r. d. Isar at the
1992 Offered Chair of Biophysics, University Konstanz
since 1992 Chair of the Department Cell Physiology (C4-Professor) Ruhr-University Bochum
1994-1998 President of ECRO (European Chemoreception Research Organization)
1998-2002 President of ICOT (International Commission of Olfaction and Taste)
1999-2003 Dean of the Faculty of Biology, Ruhr-University Bochum
2002 Offered Directorate at the German Nutrition Institute (DIFE), Berlin /Potsdam
since 2003 Member of the Senate, Ruhr-Universität Bochum
since 2005 Speaker of the International Graduate School Bioscience

Dr. Hildegunde PIZA

Fachärztin für Plastische und Wiederherstellungschirurgie,Wien

1965 Promotion zum Doktor der Gesamten Heilkunde in Graz
1975 Fachärztin für Allgemein-Chirurgie
1979 Fachärztin für Plastische und Wiederherstellungschirurgie
1983 Lehrbefugnis für Plastische Chirurgie an der Universität Wien
1992 Gründung der Abteilung für Plastische und Wiederherstellungschirurgie im Krankenhaus Lainz, leitende Ärztin
1995 Ludwig-Boltzmann-Institut für Qualitätssicherung in der Plastischen Chirurgie
seit 1999 Vorstand der Klinik für Plastische und Wiederherstellungschirurgie der Universität Innsbruck

Dr. Hervé THIS

Professor, Molecular Gastronomy Team, Institut des sciences et des industries du vivant et de l environnement (AgroParisTech) and Laboratoire de Chimie des Interactions Moléculaires, Collège de France, Paris

 Diploma of the Ecole supérieure de physique et de chimie industrielles de Paris (ESPCI)
 Modern Litterature Courses at University Paris IV
 Ph.D. of physical chemistry, University Paris VI: "Molecular and physical gastronomy"
 Habilitation to head researches, University Paris XI
since 1980 Development of Molecular Gastronomy
1988 Creation with Nicholas Kurti of the scientific discipline initially called "Molecular and Physical Gastronomy"
since 2004 Courses of Molecular Gastronomy, INA-PG (3 levels)
 Chemist I.N.R.A., Head of the INRA Molecular Gastronomy Team, in the Laboratory of chemistry "molecular interactions", Collège de France, Paris (Director of the laboratory: Jean-Marie Lehn, Nobel prize in Chemistry) and in the Laboratory of chemistry of the Institut des sciences et industries du vivant et de l environnement (AgroParisTech)
 Scientific Director of the Foundation Food Science & Culture (Academy of sciences)
2006 Creation of the Foundation Food Science & Culture (French Academy of sciences)

Dr. Andreas WEDRICH

Vorstand, Universitäts-Augenklinik, Medizinische Universität Graz

1979-1986 Medizinstudium Universität Wien
1986-1992 Facharztausbildung Augenheilkunde 1. Universitäts-Augenklinik Wien
1992-2005 Universitäts-Augenklinik
1995 Verleihung der venia docendi Universität Wien
seit 1998 Stellvertretender Vorstand Universitäts-Augenklinik
2000-2004 Supplierender Leiter Universitäts-Augenklinik
seit 2005 Vorstand der Universitäts-Augenklinik Graz

Mag. DDr. Stefan THURNER

Professor and Head, Section for Science of Complex Systems, Medical University of Vienna; President, Complexity Science Hub Vienna

1993 Magister rer.nat. (MS in Theoretical Physics), University of Vienna (honors)
1995 Dr.techn. (PhD in Theoretical Physics), Vienna University of Technology (honors)
1995, 1996 Guest Researcher, Columbia University, New York
1996 Postdoctoral Position, Humboldt University, Berlin
1996-1997 Research Associate, Boston University, Boston
1998-1999 Postdoctoral Position, Vienna University of Technology, Vienna
1999-2001 Tenure track position (Universitätsassistent), University of Vienna
2001 Dr.rer.soc.oec. (PhD in Financial Economics), University of Vienna (honors)
2001 Habilitation (Theoretical Physics), Vienna University of Technology
2001-2004 Associate Professor (a.o. Universitätsprofessor, tenure), University of Vienna
2004-2009 Associate Professor, Medical University Vienna
2007 Fellow, Collegium Budapest
since 2007 External Professor, Santa Fe Institute
since 2009 Full Professor for Science of Complex Systems, Medical University Vienna
since 2010 Senior Researcher, IIASA, Laxenburg
since 2015 Visiting Professor Nanyang Technologica University, Singapur
since 2015 President of the Complexity Science Hub Vienna
2017 Visiting Fellow, Magdalen College, Oxford

Mag. Johannes HÖHRHAN

Geschäftsführer, Industriellenvereinigung Wien

1997-2001 Studium der Betriebswirtschaftslehre Wirtschaftsuniversität Wien
  Assistent der Geschäftsführung
  Geschäftsführer der Jungen Industrie Wien
2001-2005 Industriellenvereinigung Wien:
  Bundesgeschäftsführer der Jungen Industrie Österreich
  Vorstandsmitglied in YES Young Entrepreneurs for Europe
2004-2010 Industriellenvereinigung Österreich:
  Stellvertretender Geschäftsführer der IV Wien
  Geschäftsführer der Jungen Industrie Wien
2005-2008 Industriellenvereinigung Wien:
seit 2007 Beiratsmitglied EWF-Holding
  Geschäftsführer der IV Wien
seit 2009 Industriellenvereinigung Wien:

Technology Forum

show timetable


10:00 - 23:00Presentation of the three Christian Doppler Laboratories concerning allergiesCulture
10:00 - 12:00Technology brunch hosted by Tiroler ZukunftsstiftungSocial
13:00 - 13:20Welcome addressPlenary
13:20 - 14:00OpeningPlenary
14:00 - 16:00Global warmingPlenary
16:30 - 18:15The frontiers of science [in cooperation with the Institute of Science and Technology Austria]Plenary
20:00 - 21:30Looking insidePlenary
21:30 - 23:30Reception hosted by Alcatel-Lucent AustriaSocial


09:00 - 18:00Junior Alpbach - Science and technology for young peopleBreakout
09:00 - 14:30Working Group 01: The risk and the new - 'risk governance'Breakout
09:00 - 14:30Working Group 02: The changing industrial landscape  challenges, opportunities, strategiesBreakout
09:00 - 14:30Working Group 03: Climate change and risk governance - the role of research, science and innovationBreakout
09:00 - 14:30Working Group 05: New initiatives and models of the 7th EU Framework Programme on Research to enhance European competitiveness - European technology platforms from the Austrian and the European points of viewBreakout
09:00 - 14:30Working Group 05: The end of IT-innovation - the growth opportunity for Europe?Breakout
09:00 - 14:30Working Group 06: The impact of climate change on mobility - challenges for infrastructure and private transportBreakout
09:00 - 14:30Working Group 07: Design by nature - nature's contribution to industrial progressBreakout
09:00 - 14:30Working Group 08: Smart WellbeingBreakout
09:00 - 14:30Working Group 09: The five sensesBreakout
09:00 - 14:30Working Group 10: Technology transfer in European regionsBreakout
09:00 - 14:30Working Group 11: The phenomenon of Second Life - the creation of a new world?Breakout
09:00 - 18:00Ö1 Children's University Alpbach - Science and technology for kidsBreakout
09:30 - 15:30Special event: Bulgaria and Romania as partners in EUropean science and researchBreakout
15:00 - 16:30Regions and global competitionPlenary
16:30 - 18:00The future - dream or realityPlenary
18:30 - 20:00The five sensesPlenary
20:00 - 23:30Reception hosted by the Province of Lower AustriaSocial


09:00 - 10:00What changed?Plenary
10:00 - 11:00SecurityPlenary
11:30 - 12:00Junior Alpbach and Ö1 Children's University Alpbach 2007Plenary
12:00 - 13:00Science & technology, entrepreneurship & societyPlenary
13:00 - 13:20A look back and a view aheadPlenary
13:20 - 14:30Reception hosted by Microsoft AustriaSocial