zum Inhalt
Header Image

Wir und unser Gehirn – Neurologische Forschung at the Crossroads

Plenary / Panel
in englischer Sprache

Das Gehirn wird oft als die komplizierteste Maschine im bekannten Universum bezeichnet. Die modernen Neurowissenschaften sind ein interdisziplinäres Arbeitsgebiet par excellence. Welche Durchbrüche konnten in letzter Zeit erzielt werden? Und wohin wird die Forschung führen?


Director, Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Jülich; Director Cécile and Oskar Vogt-Institute of Brain Research, Heinrich-Heine University Düsseldorf Abstract
The human brain is one of the most complex systems - it is organized on different spatial and temporal scales, including molecules and genes, cells, small microcircuits, but also long-range connections and large cognitive systems, involved, for example in language or visual processing. To understand the brain organization is aim of basic research, but also a prerequisite for analyzing the cause and dynamics of neurological and psychiatric diseases, and to find new diagnostic and therapeutic tools. Finally, we hope to better understand what makes us human beings, what consciousness is and where our cognitive abilities come from. I will focus in my talk on the first aspect, whereas the following two talks will highlight the other two.
Brain atlases are indispensable tools in human brain mapping enabling the integration of multimodal data into an anatomically defined standard space. Cytoarchitectonic maps as part of the JuBrain atlas, for example, inform about brain areas and nuclei, which are involved in a certain mental process. Such processes can be analyzed, for example, using functional neuroimaging (e.g., functional magnetic resonance imaging, fMRI). Whereas intersubject variability is often interpreted as "noise" in such studies, which should be removed from the data, we explicitly address this aspect of brain organization as a research topic, and analyze it as a correlate of mental processes. Interestingly, intersubject variability can be found on different levels of brain organization, e.g., in cellular or molecular architecture, but also with respect to functional systems, and the degree of variability is also variable.
Previous reference brains were restricted to the macroscopical scale, and did not provide information on the functionally important microscopical dimension. They did not allow, e.g., analyzing findings on the level of cortical layers and sublayers. We have pushed the limits of current technology by creating the first ultra-high resolution 3D- model of the human brain at nearly cellular resolution of 20 microns, based on 7,404 histological sections. The total volume of this original histological data set was 1 TByte. Major challenges of this human brain model comprise - among others - the highly folded cerebral cortex, and the pure size of the brain with its nearly 100 billion nerve cells and the same number of glial cells. "BigBrain" is a freely available tool with unprecedented neuroanatomical insight. It allows extracting microscopic data for modeling and simulation. BigBrain enables testing of hypotheses on optimal path lengths between interconnected cortical regions, or spatial organization of genetic patterning, redefining the traditional neuroanatomy maps such as those of Brodmann and von Economo. The BigBrain approach is supplemented by 3D- Polarized Light Imaging (3D-PLI), a method, which enables the identification of fiber bundles and even single axons in the three-dimensional space. It thus opens exciting perspectives to study the fiber architecture of the brain, i.e., the human connectome, a challenge, comparable to the genome, more than 20 years ago.
Speaker and Group Leader, German Center for Neurodegenerative Diseases, Tübingen Abstract
The increase in life expectancy in developed nations during the past century allows more and more people to live longer healthy and productive lives. Of course, this remarkably positive development has led to a significant rise both in the proportion and in the absolute number of elderly individuals in our societies. Consequently, age-related diseases impose an increasing burden on our medical and social systems. Neurodegenerative diseases, such as Alzheimer Dementia (AD) or Parkinson's Disease (PD) are among the most common age-related diseases. They are experienced as particularly devastating, as they lead to increasing disability, loss of self-dependency and eventually appear to threaten even the core of the personal identity. In economic terms, dementias and other neurodegenerative diseases are associated with costs of treatment and long-time care as high as those for cancer, cardiovascular diseases and stroke combined! More effective treatments, based on a better understanding of the disease mechanisms, are therefore urgently needed.
Despite years of research, the causes of most cases of neurodegenerative diseases have remained unknown. They seem to strike out of the blue, nobody being protected. However, in the last few years it has become apparent that, at least in a small proportion of patients, mutations in a number of single genes can lead to neurodegenerative diseases, including AD and PD. The identification of these rare genetic mutations has opened a window into the fascinating inner workings of the most complex of our organs, the brain, and led to a remarkable increase in our knowledge of the specific molecular pathways leading to neuronal dysfunction and, eventually, to premature neuronal death. Remarkably, it turned out that the identified pathways are relevant not only in the rare genetic forms of the disorders in which they have been discovered, but also in the corresponding common sporadic diseases. Abnormalities of the correct folding of proteins and their proper turn-over, but also disturbances of neuronal signal transmission and of the energy supply of nerve cells are some of these crucial cellular functions which, when impaired, lead to neurodegenerative diseases.
The findings in rare genetic cases have also clearly shown that the neurodegenerative process starts many years, probably even decades, before first symptoms appear. Based on these findings, "biomarkers" in the form of molecular signatures in body fluids or detected by molecular imaging methodologies, reflecting disease risk and progression are now being developed in many cases, in order to monitor the pathologic process even at very early stages of the disease. Promising targets for intervention are being identified, for example by studying nerve cells that can be now derived directly from patients with disease-causing mutations by reprogramming skin cells into "induced pluripotent stem cells", a technological advance that was rewarded with the Nobel Prize in 2012.
Of cause, the identification of the genetic and molecular determinants of neurodegenerative diseases not only has immense scientific, medical and social implications, but also deeply affects our understanding of personality development and autonomy in health and disease.
Director emeritus, Max Planck Institute for Brain Research, Frankfurt am Main Abstract
Die Ergebnisse der Hirnforschung legen nahe, daß alle mentalen Phänomene, unsere Wahrnehmungen, Gefühle, Motivationen, Entscheidungen und letztlich auch unser Bewußtsein, auf neuronalen Prozessen in unserem Gehirn beruhen und deshalb deren Folge sein müssen und nicht deren Ursache sein können. Unsere Intuition legt nahe, dass es in unserem Gehirn eine zentrale Instanz geben müsse, die wir mit unserem intentionalen Ich gleichsetzen. An diesem Ort, so die Annahme, würden alle Sinnesinformationen und gespeicherten Inhalte verfügbar sein, um zu Wahrnehmungen, Bewertungen, Entscheidungen und Handlungsentwürfen verarbeitet zu werden. Diese Vorstellung steht im Widerspruch zu Erkenntnissen der Hirnforschung. Diese legen nahe, dass das Gehirn ein extrem distributiv organisiertes System ist, in dem eine Vielzahl räumlich verteilter aber eng gekoppelter Prozesse gleichzeitig ablaufen und geordnete dynamische Zustände ausbilden, die keiner zentralen Koordination bedürfen. Diese komplexen raum-zeitlichen Aktivitätsmuster sind dann das neuronale Korrelat für die oben genannten mentalen Phänomene. Da neuronale Interaktionen den bekannten Naturgesetzen gehorchen muss gelten, dass die augenblicklichen Systemzustände Folge der unmittelbar vorausgehenden sind. Somit sind auch mentale Prozesse, also etwa Entscheidungen, von den naturgesetzlich ablaufenden Prozessen in neuronalen Netzwerken abhängig. Da die komplexen Wechselwirkungen in neuronalen Netzen eine nicht-lineare Dynamik aufweisen gilt, dass die jeweiligen Zustände, also etwa Bewertungen und Entscheidungen, zwar notwendige Konsequenz der Abfolge vorausgehender Systemzustände sind aber nicht vorausgesagt werden kann, wie sich das System in Zukunft verhalten wird. Dies bedeutet, daß getroffene Entscheidungen eine mehr oder weniger lange neuronale Vorgeschichte haben. Von dieser werden uns aber in der Regel nur Fragmente bewusst. Da auch die Inhalte, die in unserem Bewußtsein aufscheinen, durch neuronale Prozesse vorbereitet werden, über die wir, bis zu ihrem Bewußtwerden, keine willkürlich gesteuerte Kontrolle ausüben können, muß davon ausgegangen werden, daß unser Wollen in hohem Maße durch Prozesse bestimmt wird, die sich unserer Willkür entziehen.
Chairman of the Board of Trustees, Falling Walls Foundation gGmbH, Berlin Chair

Dr. med. Katrin AMUNTS

Director, Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Jülich; Director Cécile and Oskar Vogt-Institute of Brain Research, Heinrich-Heine University Düsseldorf

1987-1991 Research assistant, Research Center Dummerstorf, Germany
1992 Postdoctoral, Fraunhofer Institute Berlin, Germany
1992-1999 Postdoctoral, C. & O. Vogt Institute, Heinrich Heine University, Düsseldorf
1999-2008 PI "Brain Mapping", Institute of Medicine, Research Centre Jülich
2004-2008 Professor for Structural-Functional Brain Mapping (W2), RWTH Aachen University, and PI, Institute of Medicine, Research Centre Jülich
2008-2013 Full professor (W3), Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University and Director of the Institute of Neuroscience and Medicine, INM-1, Research Centre Jülich
since 2013 Full professor at the C. & O. Vogt Institute of Brain Research, Heinrich-Heine University Düsseldorf and Director of the Institute of Neuroscience and Medicine, INM-1, Research Centre Jülich

Dr. Thomas GASSER

Speaker and Group Leader, German Center for Neurodegenerative Diseases, Tübingen

1993-1996 Staff Physician, Dept. of Neurology, Klinikum Großhadern, University of Munich
1997-2002 Consultant, Dept. of Neurology, Klinikum Großhadern, University of Munich
1999 Assistant Professor of Neurology, Director, Molecular Neurogenetics Laboratory and Movement Disorders Outpatient Unit, Dept. of Neurology, University of Munich
2002 Director, Department of Neurodegenerative Disease and Professor of Neurology, Hertie-Institute for Clinical Brain Research, Center of Neurology, University of Tuebingen
2009-2012 Speaker, German Center for Neurodegenerative Disease (DZNE), Tuebingen
2010 Dean for Research, Medical Faculty, University of Tuebingen
2013 Coordinator Clinical Studies, vicarious Speaker, German Center for Neurodegenerative diseases (DZNE),Tuebingen


Director emeritus, Max Planck Institute for Brain Research, Frankfurt am Main

 Studied Medicine in Munich and Paris
 MD, Ludwig Maximilian University in Munich
 PhD, Technical University in Munich
 Director emeritus, Max Planck Institute for Brain Research, Frankfurt
 Founding Director, Frankfurt Institute for Advanced Studies (FIAS)
 Founding Director, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society
 His research is focused on the neuronal substrate of higher cognitive functions, and especially on the question how the distributed sub-processes in the brain are coordinated and bound together in order to give rise to coherent perception and action.

Dr. Jürgen MLYNEK

Chairman of the Board of Trustees, Falling Walls Foundation gGmbH, Berlin

1970-1976 Studium der Physik, Technische Universität Hannover; Ecole Polytechnique, Paris
1976-1981 Hauptdiplom Physik, Wissenschaftlicher Assistent, Institut für Angewandte Physik, Universität Hannover
1979 Promotion, Dr. rer. nat., Universität Hannover
1982 Post-Doktorand, IBM Research Laboratory, San Jose (USA)
1984 Habilitation, Universität Hannover
1983-1985 Hochschulassistent (C1), Universität Hannover
1985-1986 Heisenberg-Stipendiat der Deutschen Forschungsgemeinschaft
1986-1990 Assistenzprofessor, Eidgenössische Technische Hochschule (ETH), Zürich
1990-2000 Ordentlicher Professor (C4), Experimentalphysik, Universität Konstanz
1996-2001 Vizepräsident, Deutsche Forschungsgemeinschaft
2000-2005 Präsident, Humboldt-Universität zu Berlin
2005-2015 Präsident, Helmholtz-Gemeinschaft Deutscher Forschungszentren
seit 2015 Chairman of the Board of Trustees, Falling Walls Foundation gGmbH, Berlin


Timetable einblenden


10:00 - 12:30TechnologiebrunchSocial
13:00 - 13:10Eröffnung der Alpbacher Technologiegespräche 2014Plenary
13:10 - 14:00FTI-Politik at the CrossroadsPlenary
14:00 - 15:45Industrie 4.0 - Die nächste industrielle Revolution?Plenary
16:15 - 17:45Stanford zu Gast bei den Technologiegesprächen: Innovation und die Kultur des ScheiternsPlenary
20:00 - 21:30Wir und unser Gehirn - Neurologische Forschung at the CrossroadsPlenary
21:45 - 23:00AbendempfangSocial
21:45 - 23:00KarriereloungeSocial


09:00 - 15:00Breakout Session 01: Technology - Global Market: Österreichische Technologien für den globalen MarktBreakout
09:00 - 15:00Breakout Session 02: Technologie-Hotspots der Zukunft - Hat Europa eine Chance?Breakout
09:00 - 15:00Breakout Session 03: Herausforderung Disruptive Innovation: Strategien für eine erfolgreiche BewältigungBreakout
09:00 - 15:00Breakout Session 04: Agile und robuste Supply Chain - Volatilität im Wirtschaftsleben erfolgreich managenBreakout
09:00 - 15:00Breakout Session 05: Bioenergie - Ausweg oder Irrtum?Breakout
09:00 - 15:00Breakout Session 06: Was kostet die Zukunft der Stadt? Sozioökonomische Aspekte der Smart CityBreakout
09:00 - 15:00Breakout Session 07: Smart Energy: Herausforderungen an eine interdisziplinäre EnergiewendeBreakout
09:00 - 15:00Breakout Session 08: Wissenschaft in der Gesellschaft - Wie man Barrieren überwinden kannBreakout
09:00 - 15:00Breakout Session 09: IP-Strategien in Unternehmen: Herausforderungen für das IP-Management und die InnovationspolitikBreakout
09:00 - 15:00Breakout Session 10: Forschungsfinanzierung - Öffentlich oder privat? Neue Modelle in einer globalisierten WeltBreakout
09:00 - 15:00Breakout Session 11: Akustik-Innovationen: Trends in Industrie und AlltagBreakout
09:00 - 18:00Junior Alpbach - Wissenschaft und Technologie für junge MenschenBreakout
09:00 - 15:00Ö1 Kinderuni Alpbach - Wissenschaft und Technologie für KinderBreakout
16:00 - 16:45Digital UniversityPlenary
16:45 - 18:15Open Science - Wissen von und für Menschen in der GesellschaftPlenary
18:30 - 20:00Städte at the CrossroadsPlenary
20:00 - 22:00Urban Innovators Challenge - Stadt und ZukunftPartner


09:00 - 10:30Complexity Science - IPlenary
10:30 - 11:15Complexity Science - IIPlenary
11:45 - 13:15Innovation an der Schnittstelle von Kunst und WissenschaftPlenary
13:15 - 13:30Abschluss-Statement der Alpbacher TechnologiegesprächePlenary
13:30 - 14:00Imbiss zum Abschluss der VeranstaltungSocial